

ELIZADE UNIVERSITY, ILARA-MOKIN, ONDO STATE, NIGERIA

DEPARTMENT OF
MECHANICAL, AUTOMOTIVE AND PRODUCTION ENGINEERING

FIRST SEMESTER EXAMINATIONS

2017/2018 ACADEMIC SESSION

COURSE:

MEE 411 – Applied Thermodynamics I (2 Units)

CLASS:

400 Level Mech. & Automotive Engineering

TIME ALLOWED: 2 Hours

INSTRUCTIONS: Answer any **FOUR** questions

Frya

HOD'S SIGNATURE

Question 1

(a) What are the applications of thermodynamics relations?

(3 Marks)

Date: March, 2018

(b) Starting from laws of thermodynamics, show that the following Maxwell relations are valid.

$$\left(\frac{\partial T}{\partial \nu}\right)_{s} = -\left(\frac{\partial P}{\partial s}\right)_{v} \,, \quad \left(\frac{\partial s}{\partial P}\right)_{T} = -\left(\frac{\partial v}{\partial T}\right)_{P}$$

$$\left(\frac{\partial T}{\partial P}\right)_{S} = +\left(\frac{\partial v}{\partial S}\right)_{P}, \quad \left(\frac{\partial S}{\partial v}\right)_{T} = +\left(\frac{\partial P}{\partial T}\right)_{V}$$
 (12 Marks)

Question 2

(a) Given that $h_{fg} = TV_{fg} \left(\frac{dP}{dT}\right)_{sat,@20\,^{\circ}\text{C}}$ estimate h_{fg} of R-134a at 20 °C (5 Marks)

(b) Given that $U_j = \frac{1}{c_P} \left[T \left(\frac{\partial v}{\partial T} \right)_P - v \right]$; Find Joule-Thomson Coefficient for steam at 500° C and 2 MPa. Hence, comments on your answer (5 Marks)

(c) Given that $\left(\frac{\partial P}{\partial T}\right)_v = \left(\frac{\partial S}{\partial v}\right)_T$, Show that Clausius-Clapeyron equation is $\frac{\partial P}{\partial T} = \frac{h_{fg}}{T_0 V_{fg}}$

(5 Marks)

Question 3

- (a) A mixture is composed of 2 mol CO₂ and 4 mol N₂. It is compressed adiabatically in a cylinder from 100 kPa and 20 0 C to 2 MPa. Assuming constant specific heats, calculate
 - (i) The final temperature
 - (ii) The work required, and

(iii) The change in entropy

(7 Marks)

(b) The air at 25 °C and 100 kPa in a 150 m³ room has a relative humidity of 60%. Calculate

- (i) The humidity ratio,
- (ii) The dew point
- (iii) The mass of water vapour in the air.

(8 Marks)

Question 4

- (a) The dry- and wet-bulb temperatures of atmospheric air at 1 atm (101.325 kPa) pressure are measured with sling psychrometer and determined to be 25 and 15 °C, respectively. Determine.
 - (i) The specific humidity,
 - (ii) The relative humidity, and
 - (iii) The enthalpy of the air.

(7 Marks)

- (b) Consider a room that contains air at 1 atm, 35 °C and 40 percent relative humidity. Using the psychrometric chart, determine.
 - The specific humidity (i)
 - The enthalpy (in kJ/kg dry air) (ii)
 - The wet-bulb temperature, the dew-point temperature, and (iii)
 - (iv) The specific volume of the air (in m³/kg dry air)

(8 Marks)

Question 5

(a) List 4 basic air-conditioning processes

(4 Marks)

- (b) Water is used to remove the heat from the condenser of a power plant. 10000 kg per minute of 40 °C water enters a cooling tower, as shown in fig. Q5b. Water leaves at 25 ⁰C. Air enters at 20 ⁰C and leaves at 32 ⁰C. Estimate
 - The volume flow rate of air into the cooling tower, and (i)
 - The mass flux of water that leaves the cooling tower from the bottom. (11 Marks) (ii)

Fig. Q5b

Formulae

(1)
$$C_p = T \left(\frac{\partial s}{\partial T}\right)_P$$

(2)
$$T_2 = T_1 \left(\frac{P_2}{P_1}\right)^{k-1/k}$$

(3)
$$\Delta s = C_p ln \frac{T_2}{T_1} - R ln \frac{P_2}{P_1}$$

(4)
$$\omega_1 = \frac{C_p(T_2 - T_1) + \omega_2 h_{fg2}}{h_{g1} - h_{f2}}$$
 (5) $\omega_2 = \frac{0.622 P_{g2}}{P_2 - P_{g2}}$

(5)
$$\omega_2 = \frac{0.622 P_{g2}}{P_2 - P_{g2}}$$

(6)
$$\emptyset_1 = \frac{\omega_1 P_2}{(0.622 + \omega_1) P_{g1}}$$

$$(7) \ \omega = 0.622 \frac{P_v}{P_a}$$